Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.320
Filtrar
1.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579623

RESUMO

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , Imunoensaio , Metais
2.
Biosens Bioelectron ; 255: 116271, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583355

RESUMO

The metal-organic frameworks (MOFs) nanozyme-mediated paper-based analytical devices (PADs) have shown great potential in portable visual determination of phenolic compounds in the environment. However, most MOF nanozymes suffer from poor dispersibility and block-like structure, which often prompts deposition and results in diminished enzymatic activity, severely hindering their environmental applications. Here, we proposed colorimetric PADs for the visual detection of dichlorophen (Dcp) based on its significant inhibitory effect on the two-dimensional (2D) MOF nanozyme activity. Specifically, we synthesized a 2D Cu TCPP (Fe) (defined as 2D-CTF) MOF nanozyme exhibiting excellent dispersibility and remarkable peroxidase-like (POD-like) activity, which could catalyze the oxidation and subsequent color change of 3,3',5,5'-tetramethylbenzidine even under neutral conditions. Notably, the POD-like activity of 2D-CTF demonstrated a unique response to Dcp because of the occupation of Fe-N4 active sites on the 2D-CTF. This property enables the use of 2D-CTF as a highly efficient catalyst to develop colorimetric PADs for naked-eye and portable detection of Dcp. We believe that the proposed colorimetric PADs offer an efficient method for Dcp assay and open fresh avenues for the advancement of colorimetric sensors for analyzing of phenolic toxic substances in real samples.


Assuntos
Técnicas Biossensoriais , Diclorofeno , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Peroxidases/química , Peroxidase , Colorimetria/métodos , Fenóis , Peróxido de Hidrogênio/química
3.
Anal Chem ; 96(15): 6072-6078, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577757

RESUMO

The urgent need for sensitive and accurate assays to monitor acetylcholinesterase (AChE) activity and organophosphorus pesticides (OPs) arises from the imperative to safeguard human health and protect the ecosystem. Due to its cost-effectiveness, ease of operation, and rapid response, nanozyme-based colorimetry has been widely utilized in the determination of AChE activity and OPs. However, the rational design of nanozymes with high activity and specificity remains a great challenge. Herein, trace amount of Bi-doped core-shell Pd@Pt mesoporous nanospheres (Pd@PtBi2) have been successfully synthesized, exhibiting good peroxidase-like activity and specificity. With the incorporation of trace bismuth, there is a more than 4-fold enhancement in the peroxidase-like performance of Pd@PtBi2 compared to that of Pd@Pt. Besides, no significant improvement of oxidase-like and catalase-like activities of Pd@PtBi2 was found, which prevents interference from O2 and undesirable consumption of substrate H2O2. Based on the blocking impact of thiocholine, a colorimetric detection platform utilizing Pd@PtBi2 was constructed to monitor AChE activity with sensitivity and selectivity. Given the inhibition of OPs on AChE activity, a biosensor was further developed by integrating Pd@PtBi2 with AChE to detect OPs, capitalizing on the cascade amplification strategy. The OP biosensor achieved a detection limit as low as 0.06 ng mL-1, exhibiting high sensitivity and anti-interference ability. This work is promising for the construction of nanozymes with high activity and specificity, as well as the development of nanozyme-based colorimetric biosensors.


Assuntos
Técnicas Biossensoriais , Nanosferas , Agentes Neurotóxicos , Praguicidas , Humanos , Acetilcolinesterase/metabolismo , Compostos Organofosforados , Praguicidas/análise , Peróxido de Hidrogênio , Ecossistema , Oxirredutases , Peroxidase , Colorimetria
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124202, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565052

RESUMO

A groundbreaking optical sensing membrane has been engineered for the accurate assessment of copper ions. The pliable poly(vinyl chloride) membrane is formulated through the integration of sodium tetraphenylborate (Na-TPB), 4-(2-hydroxy-4-nitro azobenzene)-2-methyl-quinoline (HNAMQ), and tri-n-octyl phosphine oxide (TOPO), in conjunction with o-nitrophenyl octyl ether (o-NPOE). The sensor membrane undergoes a thorough investigation of its composition to optimize performance, revealing that HNAMQ serves a dual role as both an ionophore and a chromoionophore. Simultaneously, TOPO contributes to enhancing the complexation of HNAMQ with copper ions. Demonstrating a linear range for Cu2+ ions spanning from 5.0 × 10-9 to 7.5 × 10-6 M, the proposed sensor membrane showcases detection and quantification limits of 1.5 × 10-9 and 5.0 × 10-9 M, respectively. Rigorous assessments of potential interferences from other cations and anions revealed no observable disruptions in the detection of Cu2+. With no discernible HNAMQ leaching, the membrane demonstrates rapid response times and excellent durability. The sensor exhibits remarkable selectivity for Cu2+ ions and can be regenerated through exposure to 0.05 M EDTA. Successful application of the sensor in determining the presence of Cu2+ in biological (blood, liver and meat), soil, food (coffee, black tea, sour cherry juice, black currant, and milk powder) and environmental water samples underscores its efficacy.


Assuntos
Colorimetria , Cobre , Cobre/análise , Cátions , Chá , Alimentos
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124204, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569391

RESUMO

The rapid and accurate detection of drug molecules in pharmaceutical formulations and biological samples is of paramount importance. In this research article, we present a novel colorimetric sensor based on carbon dots decorated silver nanoparticles (CDs/AgNPs) for the rapid detection of ketotifen (KTF), a widely used antihistamine drug. The CDs were synthesized via a facile one-step microwave-assisted method and subsequently conjugated onto AgNPs through a simple adsorption process, forming a stable CDs/AgNPs composite. The resulting composite exhibited unique optical properties, including a strong absorption peak at 410 nm with remarkable intensity reduction and color changes upon the addition of KTF. The developed colorimetric sensor exhibited a wide linear range of 3.0-40.0 µg mL-1 (R2 = 0.9996), with a %RSD of 2.41, and a low limit of detection (LOD) of 0.981 µg mL-1. Furthermore, the sensor's practical applicability was evaluated by successfully detecting KTF in eye drops and artificial aqueous humor, demonstrating a remarkable percentage recovery exceeding 96.0 %. Finally, a comprehensive evaluation of the greenness and blueness of the method was performed using analytical eco-scale, GAPI, AGREEprep, and BAGI tools. The results of these assessments indicate its exceptional sustainability. Overall, the proposed method holds significant potential for applications in pharmaceutical quality control and therapeutic monitoring, contributing to improved patient care and drug safety in the field of ophthalmology.


Assuntos
Nanopartículas Metálicas , Humanos , Prata , Cetotifeno , Colorimetria/métodos , Carbono , Soluções Oftálmicas , Humor Aquoso
6.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578321

RESUMO

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Cloreto de Sódio , Prata , Colorimetria/métodos , Ânions , Cátions Monovalentes
7.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
8.
Mikrochim Acta ; 191(5): 284, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652331

RESUMO

A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3',5,5'-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10- 3~10- 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.


Assuntos
Carbono , Colorimetria , Cobre , Ferrocianetos , Sulfadimetoxina , Ferrocianetos/química , Sulfadimetoxina/análise , Sulfadimetoxina/química , Cobre/química , Colorimetria/métodos , Carbono/química , Limite de Detecção , Ouro/química , Pontos Quânticos/química , Fluorometria/métodos , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Nanopartículas/química , Animais , Ensaio de Imunoadsorção Enzimática/métodos
9.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38610453

RESUMO

Nanozymes possess major advantages in catalysis and biosensing compared with natural nanozymes. In this study, the AuPt@BaTiO3 bimetallic alloy Schottky junction is prepared to act as oxidase mimetics, and its photo-piezoelectric effect is investigated. The synergy between the photo-piezoelectric effect and the local surface plasmon resonance enhances the directional migration and separation of photogenerated electrons, as well as hot electrons induced by the AuPt bimetallic alloy. This synergy significantly improves the oxidase-like activity. A GSH colorimetric detection platform is developed based on this fading principle. Leveraging the photo-piezoelectric effect allows for highly sensitive detection with a low detection limit (0.225 µM) and reduces the detection time from 10 min to 3 min. The high recovery rate (ranging from 99.91% to 101.8%) in actual serum detection suggests promising potential for practical applications. The development of bimetallic alloy heterojunctions presents new opportunities for creating efficient nanozymes.


Assuntos
Ligas , Colorimetria , Catálise , Elétrons , Ressonância de Plasmônio de Superfície
10.
J Hazard Mater ; 470: 134154, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581871

RESUMO

In this work, a multiplexed colorimetric strategy was initiated for simultaneous and fast visualization of dyes using low-cost and easy-to-prepare indicator papers as sorbents. Response surface methodology (RSM) was employed to model statistically and optimize the process variables for dyes extraction and colorimetric assays. Multiplexed colorimetry was realized by virtue of synchronous color alignments from different dimensions of multiple dyes co-stained colorimetric cards under RSM-optimized conditions, and smartphone-based image analysis was subsequently performed from different modes to double-check the credibility of colorimetric assays. As concept-to-proof trials, simultaneous visualization of dyes in both beverages and simulated dye effluents was experimentally proved with results highly matched to HPLC or spiked amounts at RSM-predicted staining time as short as 50 s ∼3 min, giving LODs as low as 0.97 ± 0.22/0.18 ± 0.08 µg/mL (tartrazine/brilliant blue) for multiplexed colorimetry, which much lower than those obtained by single colorimetry. Since this is the first case to propose such a RSM-guided multiplexed colorimetric concept, it will provide a reference for engineering of other all-in-one devices which can realize synchronous visualization applications within limited experimental steps.


Assuntos
Colorimetria , Corantes , Smartphone , Colorimetria/métodos , Corantes/química , Corantes/análise , Contaminação de Alimentos/análise , Tartrazina/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Processamento de Imagem Assistida por Computador/métodos , Benzenossulfonatos/química , Bebidas/análise
11.
Dalton Trans ; 53(16): 6974-6982, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563069

RESUMO

Tubular structured composites have attracted great interest in catalysis research owing to their void-confinement effects. In this work, we synthesized a pair of hollow N-doped carbon microtubes (NCMTs) with Fe3O4 nanoparticles (NPs) encapsulated inside NCMTs (Fe3O4@NCMTs) and supported outside NCMTs (NCMTs@Fe3O4) while keeping other structural features the same. The impact of structural effects on the catalytic activities was investigated by comparing a pair of hollow-structured nanocomposites. It was found that the Fe3O4@NCMTs possessed a higher peroxidase-like activity when compared with NCMTs@Fe3O4, demonstrating structural superiority of Fe3O4@NCMTs. Based on the excellent peroxidase-like catalytic activity and stability of Fe3O4@NCMTs, an ultra-sensitive colorimetric method was developed for the detection of H2O2 and GSH with detection limits of 0.15 µM and 0.49 µM, respectively, which has potential application value in biological sciences and biotechnology.


Assuntos
Carbono , Peróxido de Hidrogênio , Carbono/química , Peróxido de Hidrogênio/química , Catálise , Nanopartículas de Magnetita/química , Propriedades de Superfície , Glutationa/química , Materiais Biomiméticos/química , Nitrogênio/química , Colorimetria , Biomimética
12.
Anal Methods ; 16(15): 2340-2348, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562104

RESUMO

The presence of paraquat in the environment poses a danger to human health, leading to a growing demand for an uncomplicated and highly responsive method to detect paraquat. This work reports a new, simple, and sensitive colorimetric aptasensor based on the designed aptamers containing 1-5 paraquat binding sites (R1-R5) in combination with gold nanoparticles (AuNPs). Although the aptamers with more binding sites exhibited greater paraquat interaction capability, the aptasensor based on the R3 aptamer showed the highest detection sensitivity for paraquat in a linear range of 5-50 nM with a limit of detection of 1.29 nM, meaning that it is 2.14 fold more sensitive than the R1-aptasensor. This R3-aptasensor selectively detected paraquat but not the other tested herbicides, including difenzoquat, 2,4-D, ametryn, atrazine, and glufosinate. Also, it efficiently detected paraquat spiked in water samples within the precision acceptance criterion of recovery rates (96.8-105.0%) and the relative standard deviations (1.50-3.81%). These results demonstrated the development of a new aptasensor for paraquat detection, in which the multiple paraquat binding sites of the aptamers could enhance detection sensitivity.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Humanos , Ouro/química , Paraquat , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Colorimetria/métodos
13.
ACS Appl Mater Interfaces ; 16(15): 19359-19368, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568140

RESUMO

Wearable sensors utilize changes in color as a response to physiological stimuli, making them easily recognizable by the naked eye. These colorimetric wearable sensors offer benefits such as easy readability, rapid responsiveness, cost-effectiveness, and straightforward manufacturing techniques. However, their applications in detecting volatile organic compounds (VOCs) in situ have been limited due to the low concentration of complex VOCs and complicated external interferences. Aiming to address these challenges, we introduced readable and wearable colorimetric sensing arrays with a microchannel structure and highly gas-sensitive materials for in situ detection of complex VOCs. The highly gas-sensitive materials were designed by loading gas-sensitive dyes into the porous metal-organic frameworks and further depositing the composites on the electrospun nanofiber membrane. The colorimetric sensor arrays were fabricated using various gas-sensitive composites, including eight dye/MOF composites that respond to various VOCs and two Pd2+/dye/MOF composites that respond to ethylene. This enables the specific recognition of multiple characteristic VOCs. A microfluidic channel made of polydimethylsiloxane (PDMS) was integrated with different colorimetric elements to create a wearable sensor array. It was attached to the surface of fruits to collect and monitor VOCs using the DenseNet classification method. As a proof of concept, we demonstrated the feasibility of the wearable sensing system in monitoring the ripening process of fruits by continuously measuring the VOC emissions from the skin of the fruit.


Assuntos
Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Colorimetria/métodos , Compreensão , Pele , Corantes
14.
Anal Methods ; 16(15): 2378-2385, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572618

RESUMO

Using silver nitrate as the silver source and sodium borohydride as the reducing agent, we synthesized negatively charged silver nanoparticles (AgNPs). Subsequently, the AgNPs solution was mixed with positively charged lead ions, resulting in AgNPs aggregation via electrostatic interactions. This led to a color change in the solution from yellow to purple and eventually to blue-green. Our study focused on a colorimetric method that exhibited high selectivity and sensitivity in detecting cysteine using AgNPs-Pb2+ as a sensing probe. Upon the introduction of cysteine to the AgNPs-Pb2+ system, the absorbance of AgNPs increased at 396 nm and decreased at 520 nm. The formation of a complex between cysteine and lead ions prevented the aggregation of silver nanoparticles, enabling the colorimetric detection of cysteine. The relationship between the concentration of ΔA396/A520 and cysteine showed linearity within the range of 0.01 to 0.1 µM; the regression equation of the calibration curve is ΔA396/A520 = 9.0005c - 0.0557 (c: µM), with an R2 value of 0.9997. The detection limit was found to be 3.8 nM (S/N = 3). This method demonstrated exceptional selectivity and sensitivity for cysteine and was effectively used for the determination of cysteine in urine. Our findings offer a new perspective for the future advancement of anti-aggregation silver nanocolorimetry.


Assuntos
Colorimetria , Nanopartículas Metálicas , Colorimetria/métodos , Cisteína , Chumbo , Prata , Íons
15.
Food Res Int ; 184: 114266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609242

RESUMO

The capacity differences of seven catechin monomers to produce colors after treating with catechin-free extract were investigated. After 240-min reaction, only (-)-epicatechin (EC) and (+)-catechin (C) presented obvious luminous red color with L* values of 63.32-71.73, a* values of 37.13-46.44, and b* values of 65.64-69.99. Meanwhile, the decrease rate of EC and C was 43.52 %-50.35 %, which were significantly lower than those of other catechin monomers (85.91 %-100 %). The oxidized products of catechin monomers were analyzed by ultra-high performance liquid chromatography-quadrupole-time of flight-mass spectrometry coupled with diode array detector, wherein dehydro-dimers and -trimers (oxidative coupling products of catechins' A-B ring) were found to be the major chromogenic compounds of EC and C. Additionally, the antioxidant capacity of catechin monomers only decreased after 30-min reaction, while along with further enzymatic reaction, catechin monomers presented comparable oxyradical scavenging ability (e.g., the DPPH inhibitory rates of catechin monomers were in the range of 24.42 %-50.77 %) to vitamin C (positive control, DPPH inhibitory rate was 27.66 %). Meanwhile, the inhibitory effects of most catechin monomers on α-glucosidase were enhanced in different degrees. These results provided basis for the development of enzymatically-oxidized catechin monomers as functional food color additives.


Assuntos
Catequina , Colorimetria , Espectrometria de Massas , 60705 , Antioxidantes
16.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622377

RESUMO

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Assuntos
Cobalto , Nanopartículas Metálicas , Óxidos , Tiofanato , Nanopartículas Metálicas/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Prata/química , Peroxidases
17.
Methods Mol Biol ; 2787: 257-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656495

RESUMO

Here, we propose a method to convert the organic nitrogen in maize kernels into ammonia in solution and then chlorinate it to prepare monochloride salts, which can form an oxidatively coupled blue-green mixture with sodium salicylate and sodium dichloroisocyanurate. The concentration of ammonium ions in the blue-green mixture can then be determined in the solution, and finally the protein content in maize kernels can be calculated from the nitrogen content.


Assuntos
Colorimetria , Grão Comestível , Proteínas de Plantas , Zea mays , Colorimetria/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Grão Comestível/química , Zea mays/química , Zea mays/metabolismo , Nitrogênio/química , Sementes/química , Sementes/metabolismo
18.
Anal Methods ; 16(16): 2597-2605, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38618693

RESUMO

The highly infectious characteristics of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the necessity of sensitive and rapid nucleocapsid (N) protein-based antigen testing for early triage and epidemic management. In this study, a colorimetric and photothermal dual-mode lateral flow immunoassay (LFIA) platform for the rapid and sensitive detection of the SARS-CoV-2 N protein was developed based on gold nanorods (GNRs), which possessed tunable local surface plasma resonance (LSPR) absorption peaks from UV-visible to near-infrared (NIR). The LSPR peak was adjusted to match the NIR emission laser 808 nm by controlling the length-to-diameter ratio, which could maximize the photothermal conversion efficiency and achieve photothermal detection signal amplification. Qualitative detection of SARS-CoV-2 N protein was achieved by observing the strip color, and the limit of detection was 2 ng mL-1, while that for photothermal detection was 0.096 ng mL-1. Artificial saliva samples spiked with the N protein were analyzed with the recoveries ranging from 84.38% to 107.72%. The intra-assay and inter-assay coefficients of variation were 6.76% and 10.39%, respectively. We further evaluated the reliability of this platform by detecting 40 clinical samples collected from nasal swabs, and the results matched well with that of nucleic acid detection (87.5%). This method shows great promise in early disease diagnosis and screening.


Assuntos
COVID-19 , Colorimetria , Proteínas do Nucleocapsídeo de Coronavírus , Ouro , Nanotubos , SARS-CoV-2 , Ouro/química , Nanotubos/química , SARS-CoV-2/imunologia , Colorimetria/métodos , Humanos , COVID-19/diagnóstico , Imunoensaio/métodos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Limite de Detecção , Raios Infravermelhos , Fosfoproteínas/análise , Fosfoproteínas/química , Fosfoproteínas/imunologia
19.
J Hazard Mater ; 470: 134271, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608593

RESUMO

Rapid and sensitive monitoring of pH and histamine is crucial for bridging biological and food systems and identifying corresponding abnormal situations. Herein, N-doped carbon dots (CDs) are fabricated by a hydrothermal method employing dipicolinic acid and o-phenylenediamine as precursors. The CDs exhibit colorimetric and fluorescent dual-mode responses to track pH and histamine variations in living cells and food freshness, respectively. The aggregation-induced emission enhancement and intramolecular charge transfer result in a decrease in absorbance and an increase in fluorescence, which become readily apparent as the pH changes from acidic to neutral. This property enables precise differentiation between normal and cancerous cells. Furthermore, given the intrinsic basicity of histamine, pH-responsive CDs are advantageous for additional colorimetric and fluorescent monitoring of histamine in food freshness, achieving linearities of 25-1000 µM and 30-1000 µM, respectively, which are broader than those of alternative nanoprobes. Interestingly, the smartphone-integrated sensing platform can portably and visually evaluate pH and histamine changes due to sensitive color changes. Therefore, the sensor not only establishes a dynamic connection between pH and histamine for the purposes of biological and food monitoring, but also presents a novel approach for developing a multifunctional biosensor that can accomplish environmental monitoring and biosensing simultaneously.


Assuntos
Carbono , Colorimetria , Histamina , Pontos Quânticos , Histamina/análise , Carbono/química , Colorimetria/métodos , Concentração de Íons de Hidrogênio , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência , Smartphone , Análise de Alimentos/métodos , Nitrogênio/química , Fluorescência , Corantes Fluorescentes/química
20.
Anal Chim Acta ; 1304: 342552, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637053

RESUMO

BACKGROUND: Rapid and accurate detection of glutathione content in human blood plays an important role in real-time tracking of related diseases. Currently, surface-enhanced Raman scattering/spectroscopy (SERS) combined with nanozyme material has been proven to have excellent properties in the detection applications compared to many other methods because of it combines the advantages of trace detection capability of SERS and efficient catalytic activity of nanozymes. However, there are still existing problems in real sample detection, and to achieve quantitative detection is still challenging. RESULTS: In this study, gold nanoparticles (AuNPs) were synthesized in situ on the surface of two-dimensional Cu-porphyrin metal-organic framework (MOF) nanosheets to produce the AuNPs@Cu-porphyrin MOF nanozyme, which exhibited both oxidase-like activity and SERS detection ability. On one hand, the intrinsic oxidase-like activity of the nanozyme could be inhibited due to the chelation of glutathione (GSH) and Cu, which thus led to the visual color change of the solution. On the other hand, the abundant Raman "hot spots" at the nanogap generated by Au NPs and the internal standard (IS) signal provided by Cu-meso-tetra (4-carboxyphenyl) porphine (Cu-TCPP) MOF improved the sensitivity and quantitative accuracy of detection. SIGNIFICANCE AND NOVELTY: A dual-mode signal output sensor based on the nanozyme was thus established, which could be used in the trace detection of GSH. Such a dual-mode sensor possesses excellent detection performance, with the advantage of both wide detection range from 1 to 300 µM in the colorimetric detection mode and high sensitivity with LOD of 5 nM in the SERS detection mode, and can be applied to GSH detection in actual serum samples with reliable results.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Ouro/química , Estruturas Metalorgânicas/química , Colorimetria , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Oxirredutases , Glutationa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA